DEPARTMENT OF STATISTICS UNIVERSITY OF WARWICK Small sets and Markov transition densities

نویسنده

  • Wilfrid S Kendall
چکیده

The theory of general state-space Markov chains can be strongly related to the case of discrete state-space by use of the notion of small sets and associated minorization conditions. The general theory shows that small sets exist for all Markov chains on state-spaces with countably generated σ-algebras, though the minorization provided by the theory concerns small sets of order n and n-step transition kernels for some unspecified n. Partly motivated by the growing importance of small sets for Markov chain Monte Carlo and Coupling from the Past, we show that in general there need be no small sets of order n = 1 even if the kernel is assumed to have a density function (though of course one can take n = 1 if the kernel density is continuous). However n = 2 will suffice for kernels with densities (integral kernels), and in fact small sets of order 2 abound in the technical sense that the 2-step kernel density can be expressed as a countable sum of nonnegative separable summands based on small sets. This can be exploited to produce a representation using a latent discrete Markov chain; indeed one might say, inside every Markov chain with measurable transition density there is a discrete state-space Markov chain struggling to escape. We conclude by discussing complements to these results, including their relevance to Harris-recurrent Markov chains and we relate the counterexample to Turán problems for bipartite graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential change-point detection for time series models: assessing the functional dynamics of neuronal networks

This paper illustrates a sequential method to detect significant parameter changes for time series models. Rather than relying on an explicit state equation, the parameters’ dynamics are assessed as a change-point problem by combining Bayesian estimation with a nonparametric test of hypothesis. The Kullback-Leibler divergence between the posterior probability densities given two different sets ...

متن کامل

Parallel hierarchical sampling: a general-purpose class of multiple-chains MCMC algorithms

This paper introduces the Parallel Hierarchical Sampler (PHS), a class of Markov chain Monte Carlo algorithms using several interacting chains having the same target distribution but different mixing properties. Unlike any single-chain MCMC algorithm, upon reaching stationarity one of the PHS chains, which we call the “mother” chain, attains exact Monte Carlo sampling of the target distribution...

متن کامل

Predicting CpG Islands and Their Relationship with Genomic Feature in Cattle by Hidden Markov Model Algorithm

Cattle supply an important source of nutrition for humans in the world. CpG islands (CGIs) are very important and useful, as they carry functionally relevant epigenetic loci for whole genome studies. As a matter of fact, there have been no formal analyses of CGIs at the DNA sequence level in cattle genomes and therefore this study was carried out to fill the gap. We used hidden markov model alg...

متن کامل

Small sets and Markov transition densities

The theory of general state-space Markov chains can be related strongly to the case of discrete state-space by use of Doeblin’s notion of small sets and associated minorization conditions. The general theory shows that small sets exist for all Markov chains on state-spaces with countably generated -algebras, though the minorization provided by the theory concerns n-step transition kernels for s...

متن کامل

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002